Neutrophil antimicrobial proteins enhance Shigella flexneri adhesion and invasion.

نویسندگان

  • Björn Eilers
  • Anne Mayer-Scholl
  • Travis Walker
  • Christoph Tang
  • Yvette Weinrauch
  • Arturo Zychlinsky
چکیده

Shigella flexneri is an enteric pathogen that causes massive inflammation and destruction of the human intestinal epithelium. Neutrophils are the first cells of the innate immune system recruited to the site of infection. These cells can attack microbes by phagocytosis, Neutrophil Extracellular Trap (NET) formation and degranulation. Here, we investigated how neutrophil degranulation affects virulence and show that exposure of Shigella to granular proteins enhances infection of epithelial cells. During this process, cationic granular proteins bind to the Shigella surface causing increased adhesion which ultimately leads to hyperinvasion. This effect is mediated by changes in the surface charge, since a lipopolysaccharide (LPS) mutant with a negative surface shows enhanced hyperinvasion compared with wild-type Shigella. We propose that Shigella evolved to use host defence molecules to enhance its virulence and subvert the innate immune system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells

Shigella is a genus of highly adapted bacterial pathogens that cause bacillary dysentery in humans. Bacteria reaching the colon invade intestinal epithelial cells by a process of bacterial-directed endocytosis mediated by the Ipa proteins: IpaB, IpaC, and IpaD of Shigella. The invasion of epithelial cells is thought to be a receptor-mediated phenomenon, although the cellular components of the h...

متن کامل

IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis.

Following contact with the epithelium, the enteric intracellular bacterial pathogen Shigella flexneri invades epithelial cells and escapes intracellular phagosomal destruction using its type III secretion system (T3SS). The bacterium replicates within the host cell cytosol and spreads between cells using actin-based motility, which is mediated by the virulence factor IcsA (VirG). Whereas S. fle...

متن کامل

Engineered and construction of pDS132::∆virG as suicide vector for targeted gene deletion of virG from Shigella flexneri 2a in order to generation a live attenuated Shigella vaccine

Background & Objective: Shigella are Gram negative bacteria capable of inducing their entry into non-phagocytic cells via secretion of various effector proteins called invasion plasmid antigens (Ipas). The most important of them is VirG protein. Live attenuated Shigella vaccines have indicated promise in inducing protective immune responses in human clinical trials. In current situation, const...

متن کامل

PI5P Triggers ICAM-1 Degradation in Shigella Infected Cells, Thus Dampening Immune Cell Recruitment.

Shigella flexneri, the pathogen responsible for bacillary dysentery, has evolved multiple strategies to control the inflammatory response. Here, we show that Shigella subverts the subcellular trafficking of the intercellular adhesion molecule-1 (ICAM-1), a key molecule in immune cell recruitment, in a mechanism dependent on the injected bacterial enzyme IpgD and its product, the lipid mediator ...

متن کامل

Shigella flexneri phagosomal escape is independent of invasion.

Infections with Salmonella enterica serovar Typhimurium and Shigella flexneri result in mucosal inflammation in response to epithelial cell invasion and macrophage cytotoxicity. These processes are mediated by type III secretion systems encoded in homologous virulence loci in the two species, namely, Salmonella pathogenicity island 1 (SPI-1), carried in the genome, and the Shigella entry region...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular microbiology

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2010